lecture 5:
LU 分解的意义:
http://blog.csdn.net/carrierlxksuper/article/details/8487276
permutation:
P-1 = Pt
一共n!个permutation matrix
transpose 的概念
symmetric matrix:
At = A
Rt*R is always symmetric.
WHY? Take transpose!
(RtR)t = Rt*Rtt = Rt*R (和逆矩阵的公式很像 (AB)-1 = B-1A-1)
所以这个是symmetric的
Vector space
Example: R2 = all 2 dimensional vectors
a vector space inside R2 is : a subspace of R2
一定得过零点
subspace of R2
1. all of R2 (最大子空间)
2. any lines through [0;0]
3. zero vector only (最小子空间)
子空间 补充:https://www.zhihu.com/question/48849797
column space: columns in Rn. Add their combinations form a subspace . (满足定义)
lecture 6:
Ax=b 有解 当b in A的column spaces (根据定义来的)
主列
null space (零空间) of A
all vectors x to let Ax = 0
at least contains [0;0;0]
solutions to Ax = 0 always gives a subspace.
subspace 一定会过零点
No comments:
Post a Comment