lecture 18
行列式 det A |A|
性质:
1.
det I = 1
det singular matrix = 0
2.
exchange rows reverse the sign of det.
det Permutation matrix = -1/ 1 根据单位矩阵来的
|a b
c d | = ad-bc
3.
|ta tb
c d| = t |a b; c d|
4. if two rows are equal, the det is 0.
5. subtract l*row i from row k. det doesn't change (消元的感觉)
6. row of 0s => det A = 0
7.三角矩阵的det 是对角线的乘积
8. det A = 0 if when A is singular
9.
det AB = detA*det B
det A-1 = 1/det A
det A2 = (det A)2
det 2A= 2^n*det A
(like a volume)
10. |At| = |A|
|Ut*Lt| = |LU|
=>|Ut|*|Lt| = |L|*|U|
lecture 19
det A = sum (A1aA2b...Anw)
如果 a,b...w可以通过偶数次变换成为1,2,。。。n 那就是正数,
余子式:行列式中指定一个数,去掉所在行和所在列的剩余矩阵是其中一个余子式
cofactor
No comments:
Post a Comment